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itecture for object modeling and iecognition For an 3 u t e  

fiilds. roads. horizon features. :rees. etc. The architecture is organized around L 
set of data bases for generic objec: models and perceptuai structures. temporaiy 
memory for :he instantiation of object 3nd re!ational hypotheses. ind a :on% : e m  
memory :or storing scabie hypotheses ihat are aExed :o :he terrain represexta- 
tion. hlultiple inference ?recesses operate over :bee databases. W C - Y i e  ( escr: 
these ?articular components: :he perceptual structure iiacabase. the groupitg 
processes :hat operate over :his. xiernas. and :he :on% :erm :er:ain d a t a b ~ e .  

. 3 ?recessing exanpie that aatches 2miic:ions 'ram :he :ocg 
term terrain model :o imagery. exxacts significant perceptuai sti'lcturej for con- 
sideration = 7otential landmarks. and extracts 3 re!atiozai structure :o upda:e 
the !onq : e m  terrain database- 

n o r n o u m k c l e  an 7' Examples of objects of interest inelude terrain features. 
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consistent terrain map. This is true. for instance, when the sensor displacement 
parameters are not well determined. It is necessary to represent this uncertainty 
explicitly in the terrain model so incrementally acquired information can be used 
for disambiguation. 

Learninq .\ vehicle will learn about the environment as it moves through 
it. .ksociating new information with the terrain representation should '5e 
straightforward. This is difficult to do. for example. by changing values in 3 raw 
elevation array. Types of information to be affixed to the terrain representation 
include newly discovered objects. details of expected objects, and the  processing 
used in object recognition. 

Fusion of Information: The ,\LV must build a consistent environmental 
model over time from different sensors. -b an object is approached. its image 
appearance and scale will change considerably. yet it has to be recognized as ;he 
same object. with aewly acquired information associated with the unique instance 
of ihe general object type. In 3 typical situation. a distant dark terrain patch 
will be partially recognized based upon distinctive visual characteristics. but may 
'x either 3 building or a road segment. -ls it is approached. Its image appearance 
changes considerabiy. making disambiguation possible. This requires :he 
representation of multiple hypotheses. each formated with respect to the proper- 
ties of the ?otential xorld objects. The structure of t h e  object description should 
direct the accumulation of informatiot. 

A further consideration in developing and evaluating terrain modeling casa- 
bilities is that there is not a single .\Ll*. Instead. there are 3 wide range of auto- 
nomous :-enicles. incesed by 3 diverse range oi  active and passive sensors 33d 
xsurnprions about 3 priori data. There is a continuum from systems havicg 3 
compiere Initiai modei ot' the  terrain and periect >ensorS to those with no a pr:ori 
moahi. mc highly imperfect sensors. For example. 3 robot with no a priori data 
and cniv 3r: unstabilized optical s emw xii l  probably nodei the environmect in 
:erris of a sequence of views reiated by landmarks and distinct visual events 
embedded in 3 representation :hat is more topological than metric. -1LV 
joiely uewndent on optical Imagery will have to deal with :he huge variability in 
:he appexmce of objects. Experience has shown :hat even road surfaces have 
i g h i y  ~ i r i a b l e  v:sual characteristics. .\lternati-.-eiy. a few pieces of highly ?re- 
selected ~ i s u a l  h io rna t ion  can serve to verify predictions from i reliable md 
detaiiea ierrsin rnocel and precise position and ranxe sensors. 

LVe c d l  3 ge-eral object rr.odel a schema. -\ schema can represent >er- 
Teivec. ju :  mrecognized. visual events. x weil as recognized objects and :heir 
r e i a t i o ~ i i ? ~  in Ygvironmentai scenes. Tkie architecturai design is :'ocused s h u t  
:he reprtsect3tion. ins~n:ia:,on. and inference over schernas deveioped by :he 
- I L L *  z :r moves :;?rouqh :he cnvironne9t. Schernas are related :O similar ron- 
cepts :'ound in Hanson €[.ai. - 7 5  snd Ohia - 30.  The short term :e:xin 

. J  ~ - t ~ : 3 : . 0 3  -O:E.:-S I; SC:.PT:-.? ~ s : ~ ~ ~ : : ~ : : c c s  -.:z: -e?:ec'er: ~c:*:rn..:.a:ec :e:- 
ceptuai ev:cence for objecrs 3s 3tt:ibutes 3nd re!a:ions that 3re hypotSesized 
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viewing procedures. These viewing attributes are also inherited and modified 
according to different object types. In many systems. objects are treated as lists 
of attributes tha t  zre matched against extracted image features. Here they are 
treated as specifying an active control process that directs image segmentation by 
specifying grouping procedures to extract and organize image structures. 

,Another critical aspect of the architecture is the various types of spatial, 
localization relations that deal with uncertainty and learning by associating 
different types of perceptually derived information with terrain models. For 
example. local (multi-sensor) viewframes affix sets of schemas and un-recosnized 
perceptual structures into local "robot's-eye" views of an ALV's environment. 
Path-afixments between local view frames support fusion of information in time 
without cecessarily corresponding to locations in an a priori grid. 

This eifort has developed an architecture for terrain snd object recognition 
compatibie with the wide range of potential sensor configurations and the 
different qualities of a priori data. 

There has Seen work in artiiicial intelligence. computer vision. and graphics 
that  satisfy the individuai requirerzlents for object modeling capabilities, but Little 
hw been done to integrate them. To daw. there Is no vision system that can 
interpret general natural scenes. although some can deal with restricted environ- 
ments YHanson et.al. - 79 while other systems are restricted to artificial objects 
and environments. Brooks' Brooks - 3-1 representation based on generalized 
cylinders meets. or couid be extended to deal with, many of these functions. It 
has well defined shape attribute inheritance between a set of progressively more 
complex object models. and a%.ment relations tnat could be generalized to han- 
dle 1incer:ainty. I t  c m  ais0 be !:sed ro generate constraints on image features 
iron: object rr,ode!s. Soneyhe!ess. the system buiit around this representation has 
had iimired success beyond dealing wiT5 essentiaily orthographic i-iews of 
geometricsily weil cefined man-made objects. This appeax to be partia!ll; 
because :he constraints on image structures generated from the abstract instances 
of objec: moaeIs are too senerai to generate kitial correspondences between 
modeis ma Image strictures. Brook's systerr. ais0 used 3n impoverished <et of 
image descri?tions, snd :he objec: models could not direct the segmentation ?ro- 
cess direct!! during their instantiation. T3e majority of work in terrain moceilng 
deais wi th  how weil 3 representation can reaiisticalll; modei :hree dimensional 
cerrain. j u t  3ot how it  3 Tised for recognition. The simpiici:>- of 3 modei :hat is 
described by 5 f ex  ?arsme:ers is 2ot aseiui for recosnition *in:ess I t  c3n direct 
constrained iearches sqaicst ima- data. For example. Pentla2ci.s Pentland - $3 
'ise o i  ~:scra;s :ar.;snes s-pec:s 01 cesciptive acequ3cy :^or 331urai rerrain. j u t  5.3s 
'&e, ies= zzective 'or recogiricr. Iiuipers Kxiaers - 32 :?as ?roducod Zn 
In:erec:i: :errah model :'or learzing and :?ancl:nq 1incer:aict:.-. j u t  i t  3 ?on 
;.isuai. h 3:ed :o :his :s K - i a n ' ~  K.;an - 5-1 obiec: based rerrain represes:s:ion 
:'or ? i39- :3~  :hat 's orasnized in 'erms of eisticct. modi5sbie objects. Sut :s ilso 
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attention in system processing and monitors progress toward system task goals. 
This high level architecture Is depicted in Figure 1. The boxes with square 
corners in this figure represent databases. the ellipses represent inference 
processes. and arrows indicate dataflow. 

3.1 SYSTE,M DATABASES 

AL the highest level there are three databases. These are the short term 
memorv (STSl), long term memory (,LTM), 3nd generic models. 

The STSl acts as 3 dynamic scrat:hpad for the vision system. It has two 
sub-ares. a perceptual structures database (PSDB) and a hypothesis space. The 
PSDB Includes incoming imagery from sensors, immediate results of extracting 
image StiuCtureS such as curves, regions and surfaces. spatial temporal groupings 
of these structures. and resuits of in:hrring 3D information. 

T i e  hypotheses space contains statements about objects and terrain in :he 
wor!d. -\ hypothesis is represented as an instantiated schema. The schema 
points :o the various Ferceptual structures in the PSDB that provice evideace 
that the object reprezentea 5y the schema (such M 3 terrain patch. road, tree. 
etc.) exists in the world. Other types of hypotheses include grids. viewframes. 
and riewpaths. Grids are 3 special type of terrain representation that contain 
elevation information and are derived from range data or successi1.e depth maps 
from motion stereo. 1':ewpaths. as partially ordered sequences of viewfrarces. 
give space time relationships 'between hypotheses. Viewframes are sets of 
hypotheses that correspond to wh3t can be seen from 3 localized 2osition. =\ 
hypotheis with no associated ?erceptual structures is a prediction. As structures 
and locaiitation sre Incrementally added :o a hypothesis. it progresses on the con- 
tia*ium :ram predicted !o :eco-iyized. Hypotheses ihat have e2oush evidexe 
associaxd with :hem :o be cor-sidered :ecogDized m a  sable.  are moved to :he 
LTlI. 

A 
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The LThl stores a priori terrain representations. the long term terrain data- 
base. and hypotheses with enough associated evidence to be considered visually 
stable. A priori data concerning elevation and terrain type information, as well 
as knowledge of specific landmarks are stored in the LTSI. -4 viewframe. 
representisg 3 certain location in the world is stored in the LTM if the evidence 
associated with it could be re-used to recognize the local environment if it was 
re-encountered. Consistency of one hypothesis with another is not required tor 
storage in the LTSI. 

The model space stores generic object models. the inheritance relations of 
the (model) schema network. and a set of image structure grouping processes and 
rules for evaluating image structure interestingness. Generic models are used 
dynamically to instantiate and guide search processes to associate evidence to an 
object instance. Inheritance relations are used by various schema inference pro- 
cedures to propagate structures. sttributes and relations between object instan- 
tiations. For instance. the generic two-lane-mad schema has an "IEA" relation- 
ship to the generic road schema. It follows. based on the inheritance models, that 
an instantiation of the two-lane-road schema will inherit the more general charac- 
teristics oi the generic road schema Lhat in turn inherits the more general charac- 
teristics of a terrain patch. Cnlike the STSI and LTSl. the model space is not 
modified by inference processes. 

3.2 INFERENCE PROCESSES 

. i t  :he highest level. there are five different sorts of inference processes :n 
the vision system. These are perceptual inference. location inference. object 
instantiation, LTSl ,STY instantiation. and the task interface. 

TL,e PSDB is initiaiized wi th  the output of standard muiti-resolution image 
processins operations for smoothing. edge extraction. flow field determination. 
etc. hlucs subtler inierence is required for grouping processes that produce con- 
nected carves. textures. surfaces. and temporal marches between image sti'Jc- 
tures. These grouuics operations ate typicaily modei guided. There 3re generic 
models which may j e  :ask dependent) of what constitutes "interestingness" 31' 
3n irr-age structure. 

The hypochesk inference processes produce tasks for :he percept*:ai 
processes. These ma:; be satissed by simple queries over the PSDB such as - * 5 d  
ail long !ines In this q i o n  of Image-, where "!ong". '*line- and "region" sre  sui:- 
ably interpreted. Queries can 3e more complex. requiring. for instance. tempon; 
stabiiity. suc5 zj *.%a q i l  5ornogeneous green texture regions that sre matched 
,i.e.. :emain in the 5eid of *.-iew\ over at  : e s t  two seconds oi  imagery'. where. 
3gain. 3qu3iitative descriptors are rigorousiy defined. -\:tetnacively. :he reques:ed 
F r c e ? t u d  struptures may be dynamically extracted. In :his case. 3 history of ::e 

!ace?. TXCZ E, Zf we -xe:e to v!ew :he same envirocrent from 3 ditferent perspet- 
tive. :hese Frocessing histories cor;ld be used to recail 3 processing sequence 153; 
?roauced successiul results. 

.a . .. 
3 r O c ' e : ~ i ~ <  lt:e.~.?:s :ZC :es~.:s .~.3:2:3.cec. 2 :IE::.3: :fql;e::S are  7:- 12 

Locztion 7rocesses Inciuae 3 number o i  diferent nodes oi  spacial :oca~ion 
reDresentac,on and Inference. '+Vhile exact !ocation information is ,sed :vhen I: :s 
3vailable. 3 sey coccept is :he quaiitative representation 0; relative !ocation. 
This :s Findamentai. because :he ?roblem o i  acquiring terrain kowledqe f m n  
moving sensors invoives handling perceptual in:brmatlon :ha: arises f r o 3  
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multiple coordinate systems that are transforming in time. The basic approach 
to location inference is t o  represent the location of world objects in a qualitative 
manner that does not require the full knowledge of continuous transformations of 
sensor coordinates. relative to  the vehicle the sensors are mounted on. or of 
transformations of vehicle coordinates relative to the terrain. 

The main structures involved in location inference are viewframes, 
viewpaths, and grids. Viewframes represent both metric location information 
about world objects derived from range sensors and view-based location informa- 
tion about the directions in which objects are found derived from passive sensor 
data. 

Generic schemas are models of world objects that include information and 
procedures on how to predict and match the object models in the available sensor 
data. Besides representing 3D geometric constraints, 2D-3D sensor view appear- 
ance including effects of change in resolution and environmental effects such as 
season, weather. etc.. schemas also indicate contextual relationships with other 
objects, type and spatial constraints. similarity and conflict relations, spatial 
!ocalitation. and appearance in viewframes. 

Object schema instantiation may occur by model-driven prediction from a 
priori knowledge. or directly from another instantiation and a P.iRT-OF relation. 
The other instantiation process may also occur by matching a distinctive percep- 
tual  structure to a schema appearance instance. This sort of “triggering’ is more 
common in situations where there is little a priori information to guide predic- 
tion. Object instantiations generate queries to the PSDB grouping process in 
order to complete matching. 

=\ key idea in object instmtiation processing is inference over the model 
schema network hierarchies. Direct representation and inference over a laqe 
enough body of world objects to ~ccomolish outdoor terrain understandins 
requires very large memory and proportionately lengthy inference procedures over 
tha t  memory space. Hierarchical repreentation makes a significant reduction In 
storage requirements: farthermore. it iends itself naturally to matching schema YO 

worid objects at multiple levels of abstraction. thus speedins the inference pr+ 
cess. Two Sasic hierarchies are the E-.\ and P-UT-OF trees. 

E.1 hierarchies represent the reanement oi object classificarion. Figure 2 
shows part of an IS-=\ hierarchy for terrain representation. The :eve1 of 
:errestrial-ooject tells us that we wiil not see evidence of any schema instance 
below this node 33 ?erceptQai stxc:ures surrounded by sky. Xt the !eve1 of 
:ertiin-patch we pick up :he geornerric knowledge of adherence 50 :he ground 
Diane. xniie :nformac;on stored at :he ievei o i  a road schema cmstrains :he *bun- 
daries of 3 :i?rrain patch to be :ocaily h e a r  (with other constraints). Types 
beneath road add critical 3ppea;mce constraints in color ana tex:ure. xhiie :he 
i k~ .  :eEnerrxnt .eye. :c :ne :>-.I ::e~i~.l ; : .  :he :urL3er o i  ‘anei. .~::her :3c- 
str3;ns size ?ammeters inherited from :he road schema. 

.- 

P-UIT-OF hierarchies represent :he decomposition of mr!d objec:s h t o  
compoce9ts. each of which is. itse!f. mother world object. Figure 3 shows 3 
P.=T-OF ierarchy decomposition for a generic ‘I-lane-road. P.lilT-OF iierar- 
(.Dies contain re!ative geometric: iciormation that is   useful in ?rediction 3nd 
searc2. 



Fiqure 2: IS-.% Hierarchy Figure 3: Part of Hierarchy 

-4s object instantiation inference reasons up and down schema network 
hierarchies. incrementally matching perceptual structures and other data to 
instances of object appearance in the world. a history mechanism records the 
inference processing steps. parametem and results. This dynamic da ta  structure 
is called the schema instantiation structure. One important aspect of this struc- 
ture is that  it can used to extract the inference and processing sequence(s:i that 
worked earlier t o  see t he  same object. or ones that are similar. This accounts for 
the fact that  distinctiveness in image appearance is an idiosyncratic process that 
depends upon many factors which are difficult to model and control, such as 
current motion. Kind. varying outdoor illumination. etc. 

4. PERCEPTUAL PROCESSING A.W THE PSDB 

Perceptual pTocessinq is concerned with organizing images into meaningiui 
chunks. The definition of "meaningful" and the development of explicit criteria 
to evaluate segmentation techniques involves. from a data-driven perspective. 
:hat the chunks have characterizing properties. such as regularity. connectedness. 
and not Lending :o fragment the image. From a model-driven point of view. seg- 
mentation appropriateness corresponds :o the extent to which the piec-s can be 
matched to structures and predicrions derived from object moae:-i. Trom either 
.xrspec:ive. a basic requirement 's :hat image segmentation procedures 2nd 
significant image Structures. indepecaent of world semantics. in order :o Ini:ialize 
ana cue model matching: This allows for the extraction of world events such xi 
surlace5. 3oundaries. m c  'cterwtinq xitterns :ndeoendent of mderstanding 3er- 
ceptions in the context of a particwar ooject. These. in turn. are useiui amtrac- 
:ions 'ram image information :o match against object models or describe :he 
characteristics of govei objects. 

The Perceptual Stmcture Data Base [PSDB), conceptualized in Fisxre 4. 
contains several different types of information. These 3re classified xj :maqes. 
perceptuai objects. and gmups. I n ~ g e s  are the arrays of numbers obtained from 
:he diiTerent sensors and :he results of low level image processing (such u con- 
:our extrac:ion snd region growing routines) that produce such srrays. It s 

313 



difEcult for the symboiic relational representations used for object models. such 
as schemas. and the processing rules in computer vision systems. to work directly 
with an army of numbers. Therefore, there are many spatially-tagged, symbolic 
representations used in image understanding systems that describe extracted 
image structures such m the primal sketch :Mart - 82,  the RSV structure of the 
VISIOSS system :Hmson et.al. - 78', and the patchery data structure of Ohta 
Oh ta  - 80,. N'e found it useful to build such a representation around a set of 
basic perceptual objects corresponding to pia: ,  curves, regions, surfaces, and 
volumes. 

Groupings are recumively defined to be a related set of such objects The  
relation may be exactly determined, as in representing which edges are directly 
adjacent to a region, or they may require a grouping procedure t o  determine the 
set of objects that satisfy the relationship. Groupings can occur over space. e.g.. 
linking texture elements under some shape criteria such as compactness and den- 
sity, or over time, aa in associating instances of perceptual structures in succes- 
sive images. We stretch the concept a bit. so that groupings also refer to general 
non-image registered perceptual information, such as histograms. 

4.1 INITIALIZATION OF THE PSDB 

W-henever new sensor data is obtained, a default set of operations are per- 
formed to initialize the PSDB. Edges are extracted a t  multiple spatial frequen- 
cies and decomposed into linear subsegments. The edges are extracted into dis- 
tinct connected curves, and general attributes such as average intensity, contrast. 
and variance are associated with them. Similar processing is performed for 
regions extractions. Histograms are computed with respect to a .wide range of 
object based and image based characteristics in 3 pyramid iike structure. These 
default operations are used to initialize bottom-up grouping processes and schema 
instantiations. These, in turn, determine signscant structures using heuriszic 
interestingness rules io prioritize the structures for the application of grouping 
processes or object instantiations. 

4.2 W G E S  

lmages are the data arrays derived from the optical and !aser range sensors 
and the results of image processing routines for operations including histogram- 
based segmentation. differett edge operators, optic flow Seid computations, and 
so forth. .bsociated with images 3re seven; attriSutes for time of acquisition. 
re!evant sensor parsmecers. etc. P;-ocessing history is maintained in the process- 
ins relationship jtrixture that 'teeps track of :he processing history of ail Jbjects 
in the PSDB. 

4.3 PERCEPTUAL OBJECTS 

Points. curves. regions. surfaces. 3nu  r-olurnes are basic :ypes oi perceptual 
structures that are acressibie to object instantiations and grouping proce-xs. 
example instance of 3 curve structure is shown in Figure 5. This 5gux shows 
m a n y  common representational characteristics of perceptuai objects. Tiere 3re 
default attributes zsociated with particular objects. such as endpoints. length 
and positions for 3 cwve. There is 3iso 38 associated attribute-list mechanism 
for i ncopra t ing  more general properties with 3n object. T5is :ist is actessibie 



Figure 4: Perceptual Structure Data Base (PSDB) 

. .  .. , ‘  

Figure 5: Curve Example 

‘ I  
Figure 6: Parallel Grouping 

by keywords acd a general query mechanism using methods specific to the partic- 
uiar associated attribute. The associated attributes in the example are shown in 
capital !etters. There are many types of attributes that can be consistently as- 
ciated with a curve using this mechanism. 

.A Tiseful representation for performing geometric operations and queries 
over objects is the OBJECT LBEL-GRLD (or GRID: in the exampie curve. 
The number 6 indicates the index of this structure). This is an image where each 
pixel contains a vector of pointers back to the set of perceptual objects 3nd 
groups which occupy that pasition. This allows geometric operations to be *r- 
formed directly on the grid. Filtering operations can be applied to the OBJECT 
LABEL GRID to restrict processing based upon a t t r ibu te  associated with 
objects. Various types of masks can be associated with objects t o  reflect a direc- 
tional or uniform neighborhood to determine object relationships in the OBJECT 
LABEL GRID. 
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4.4 GROUPS 

A group is a set of related perceptual objects. The  relation can be deter- 
mined d i i t l y  by a query over an object and those surrounding it, as in finding 
the set of curves within some distance of a given region. Alternatively, it may 
require a starch process $0 find the set of objects meeting some, potentially com- 
plex, criteria- For example, an ordered set of curves can be grouped together 
using thresholds on allowable changes in the average contrmt and orientation of 
successive elements. By expressing the grouping process as a search over a state 
space of potential groups, each group becoma a potentid hypothesis in the 
PSDB. Groups can also reflect temporal relationships; this occurs in matching 
structures in successive images. A relational grouping procedure is shown in Fig- 
ure 6 for the determination of nearby parallel lines with opposite contrast direc- 
tions. This is done for a linear segment by first extracting nearby neighbors 
using a narrow ma3k oriented perpendicular from the segment a t  i ts  mid-point. 
The intersection of this mask with points in the label grid are determined, and 
then each candidate is evaluated by checking if it is within allowable thresholds 
for length, contrast, and orientation. It is then ordered with respect to the smal- 
lest magnitude of the difference vector computed from the average gradients. 
The grouping processes can either produce the best candidate as a potential 
grouping, or some set of them. 

Two different types of grouping processes have been developed: measure- 
based and interestingness-based. The measure based grouper is a generalization 
of established edge and region linkers :Martelli - 76:. I t  uses a measure consisting 
Of: 

.j some vaiue to be optimized, ruch as !ength, minimal curvature. com- 

2) local constraints on allowabie changes in attributes 

3) giobal thresholds on attributes 

pactness, w a composite scalar value 

The memure and associated constraints are optimized by a best first search 
returning several ordered candidate groups. The measure to be used can be as- 
ciated with a prediction from an object model Tor substance or shape characreris- 
tics. The measure to be optimized can also be determined directly from initially 
extracted objects by selecting those that are extreme in some attribute or are 
correlated with the attributes of surrounding objects to derive a measure to be 
optimized. 

The measure b a d  grouper Is currently Seinq generalized into one bawd on 
interestingness. it :nvoives :he Dasic prccessing .oop shown in F:gure 7 .  h ; . a J y .  
basic perceptual objects inciuding curves. regions. junctions 3 ~ d  their sssociated 
attributes are extracted using conventional zechniques. Extracted objecs are 
represented in label grids to express spatial neighborhood operations over :he 
objects. .4 miform neighborhood is established for each object. and directed rela- 
tions are formed w i t h  the adjacent objects in each neighborhood. These relations 
are represented in a small number of types of match relationships that contain 
descriptions of the correlation of attributes, subcomponent matching, and compo- 
site properties. 
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Selccted attributes of the ertracted perceptual objects and the match struc- 
tures are then sorted into lists with pointers back to the associated objects. 
These liits are for attributes such as size, average feature values, variance of 
feature values, compactness, the extent of correlation between the components 
and attributes of different structures, and the number of groups an object is 
involved in. These different rankings are then combined using a selection criteria 
to choose the set of interesting perceptual objects and relationships. The selec- 
tion criteria sets the required position in different subsets of the sorted attribute 
lists. An example is to find 100 largest objects in the top 10 of any of the attri- 
bute correlation lists. The selection criteria is modifiable during processing and is 
meant to reflect the influence of model-based predictions. 

Interestingness is used to focus the app!ication of grouping rules to a 
selected set of objects and relations between objects indicated in match struc- 
tures. The grouping rules then combine perceptual objects to form new percep 
tual objects, or groups, based upon the type of relation between the objects. 
Neighborhoods are established with respect to these derived groups to form new 
relationships. These in turn are sorted in the attribute lists with respect the 
previously extracted perceptual objects. In addition to the relations established 
in uniform neighborhoods, for some groups. non-uniform relations are also esta- 
blished. Processing can continue indefinitely as less and less interesting relations 
become candidates for the application of grouping rules. Explicit criteria are 
needed to stop processing; e.g., we can limit processing time, determine when 
there is a uniform covering of the image with extracted groups. or when struc- 
tures belong to unique groups. 

I g x e  7 :  Grouping Processing Fiow Fisure 3: Grouping .irchitec:ure 
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These operations are performed by virtual processors called grouping nodes. 
Grouping nodes are seen as covering regular and adjacent portions of an image 
area (not necessarily of a single image, because there can be multiple images in a 
motion sequence). The image area contains some portion of a label plane for 
accessing the objects based upon their spatial dimpositions as well as object-based 
associated attributes. The grouping nodes are further organized in a hierarchical 
pyramid shown in Figure 8. Each node Is connected to its adjacent neighbors 
and has a parent and descendants. The transfer of information between nodes at 
different levels is based upon interestingness. Lower level processes send their 
most interesting structures up the hierarchy. There are several effects of this. 
One is that it allows a uniform processing to occur at different levels, so grouping 
rules can be applied to objects at  dfierent levels of interestingness. It also allows 
relztions between nonspatially adjacent structures to be handled in a uniform 
architecture. It also partitions perceptual structure.. in a way that corresponds to 
dflerent levels of control in instantiation of object models. 

Organizing segmentation in terms of grouping processes has many advan- 
tages for a model based vision system. The grouping pn>cesses can be run 
automatically from extracted significant structures based upon perceptually 
significant, though non-semantic criteria. Thus, connected curyes of slowly 
changing orientation or compact, homogeneous regions can be extracted purely 
on perceptual criteria. These image structures correspond to world structure and 
events, and they are useful for initializing schema instantiations. They 
correspond to the qualitative image predictions associated with more general 
schema. .An inference process for compilation from an object model into o~roup 
ing processes, allows model based vision to have a very active character quite 
different from singlelevel attribute matching. 

5. SCHEMAS 

, 
Sctemaa represent hypotheses about objects in the world. The process of 

schema instantiation creates an Instance of a schema together with evidence !or 
that schema. Eviaence consists of structures in the PSDB, 3 priori knowledge 
stored in the LTM. predictions derived from location inference, and relations :o 
already instantiated schema. 

Table 1 shows the various slots and relationships in a generic sciema. 
,Uthough this data structure has a framelike appearance, it is useful to view :he 
schema as a semantic net structure, with slots representing nodes in the %et ana 
relationships representing arcs. Schema instantiation inference reaSOns from a 
(partiaily) instantiated node, foilows arcs. and infers procedures to execute from 
the sum of its acquired intormation in order to obtain more evidence to further 
imtantiste :he schema. 

The schema network is 3 generic set. of data structures that indicate :he a 
priori relationships between schemas. A key part of this network is the inheri- 
tance hierarchies that indicate which descriptions w d  relationships can be Inher- 
ited from schema to schema. Inheritance hierarchies allow edicient matching G 
objects in the wor!d against sensor evidence from progressively coarser :o iner 
levels. .Is reasoning moves from coarser to finer !evels of description in zodel- 
based schema instantiations. the schemas inherit descriptive hounds and 3da 3ew 
descriptions, and ais0 add constraints to inherited ones. For example, :he system 
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Table 1: Generic Schema Data Structure 

may fint recognize an object as a terrain patch (because it !ies on the ground 
plane). A road is a type of terrain patch (see Figure 1, that adds linear boundary 
description, and constrains the visual image appearance of the terrain patch 
schema in the color and texture descriptors. The two basic types of schema aet- 
work inheritance hierarchies are IS-.A and PART-OF. 

Below is 3 brief explanation of each of the slots and relationships in the 
generic schema data structure. Schema type refers to the generic name of the 
schema in the IS-A hierarchy. Schema name is the identification of the schema 
instance, e.g., if the schema type is "road" then the schema name might 'be 
"5iqhwap 101'. The schema instantiation structure maintains the control history 
of the schema recognition inference ixocesses for this schema. 

The 3D description is an object-centered view of the world object 
xeptesen:ed Sp :he sc5erca. it :nc!udes its 3D geometry 3nd ?haze description. 
actual size. and inherent color and texture (as opposed to how its color and :ex- 
ture might appear to a 2articuiar sensor). Sote that this is the description :hat 
matches the schema-object before looking at its structure r ebed  into com- 
ponents. For example. the 3D geometric description of a tree schema does zot 
separate the canopy from the trunk, but  gives a single enclosing volume as Its 
=presentation. The volumetric descriptions of the trunk and canopy appear 35 
the 3D descriptors on their schema further down the P-UT-OF hierarchy. Thus. 
inferring down the P.%RT-OF hierarchy corresponds to kcreeasing the resolution 

3 25 

.? 



of the view of the object represented by the  schemas. 

The sensor views are descript;ons of the stable or frequently occurring 
appearances of the schema object in imagery. This description is intended to be 
used for image appearance prediction, evidence accrual for instance recognition, 
3D shape inference, and location inference. The reason for storing or runtime 
generation ot explicit (parametrized) image views is that the perceptual evidence 
matches to these descriptions, not to the three! dimensional ones. 

The distinctive image appearance slot holds descriptions of perceptual 
strueturn that are likely to occur bottom-up in the PSDB. They provide coarse 
triggers far instantiating the schema object hypothesis without prediction. 

The perceptual structure is the dynamically created PSDB query history 
generated by the schema instantiation as i t  attempts to fill in evidence matching 
the various schema slots and relations. The instantiator can re-use successful 
branches of perceptual structures to improve its recognition speed as i t  continues 
to view other instances of the same generic schema type. 

Components are pointers to other schema that represent sub-parts of :he 
schema object. They are Sner resolution description of the schema, one !eve1 
down on the P-UT-OF hierarchy. The bKST-H.4VE components are assumed 
to be parts the represented object must have LO exist. although the schema may 
be instantiated without observing them all. Occasionally occurring components. 
such as center-lines on roads, can be stored in the SLiY-H-4VE slot. Spatial rela- 
tionships between components as they make up the schema object are listed at 
this level also. Relationships can also be stored on a view dependent basis. 
These relationships access the sensor-view dependent data in that slot. P-LFtT- 
OF'S point upward one ;eve1 on the P=tRT-OF hierarchy, indicating that chis 
schema is a component of another schema. 

Classification points Tipward and downward one !eve1 on the IS-X hierarchy. 
There may be more than one such pointer, which :S to say that the I S . 4  hierar- 
chy  m y  be partially ordeted. 

Contextual relationships indicate spatial/ temporai consonance or disconso- 
nance Setween groups of schema types, omitting !hose which are already kdi- 
cated in the P-UZT-OF and IS--i hierarchies. Schema that .UJV.lYS or zever- 
occur with the given one caa be used strongly for belief or dis-beiief 's the 
x i e m a  instance and as kcus of attention mechanisms within the instan5ation 
Frocess. SOSfETl3lES occurs with relationships :hat are used to store Ae 
spatial-temporal aspects of schemas relative appearance in :he viewed eivimn- 
.Tent. 

CO.\;FCED-iVITH 3nd SLWL-UZ-TO :elationships indicate sckena :haL 
z a y  be mistaken for the siven one. but for different reasons. One schema xay  
3t. :on',5efl xi:h 3.no:;let s e c 3 a e  :Ley jhare iozz-02 r v i c e x e  ?iecos. 2 ; :  ..J: 
which there 3re suficient descriptors to disambiguate. Two schema 3re h i l a r  :i 
:here is sufficient ambigui:? in their appearances. and therefore the available ?e:- 
ceptual evidence. that  :hey may be indistinguishable xithout con:extuai r e s o n -  
'ng. For example. ta!l g x c s  may be confused with wheat from coarse shace inc 
'exture evidence. but ca2 oiten be disambiguated by color descriptors ai i c e r  
resolution examination of structure (because of wheat berries. Tor exampiel. 30w- 
ever. roads 3re simiIar :o runways because they cannot necessariiy x lis- 
*inguished by their intrixic appearance. no matter 30's detailed or accuri:e :he 
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descriptors and evidence. Contextual reasoning, e.g., the presence of aircraft oa 
the runway, global curvature of the road, etc. is required. 

Locational information points at the various viewframes the schema appeam 
in and inferred 3D relationships with other world objects. 

Recognition strategies are prioritization cues lor the schema instantiation 
processes that suggest inference chains likely to pay OR to match this schema 
instance against sensor evidence. 

The recognition strategies slot in the schema data structure prioritizes infer- 
ence approaches relevant to this schema. These approaches include search for 
components, search for part of schema instance, search on weaker classification, 
relations with other schema instances. and PSDB matching. 

Search for C O M P O X S T S  and search for PAFtT-OF are both inferences 
along the P-lRT-OF hierarchy in diiferent directions. The instantiator searches 
the relevant slot to  see if there 3re components to search for or another object of 
which this schema is a component. If the COMPOSTST or P-UIT-OF schema 
exist. they can be accessed to continue the inference. Otherwise, each causes an 
instantiation of the missing schema :o be generated as a prediction. Instantiation 
control can be transferred a t  This ?oint to the COhlPO?;EST or P-UZT-OF 
schema. The schema inference Troctss maintains its thread of reasoning relevant 
to the schema in the schema instantiation structure slot. 

8. LONG TERM TERRAIN DATABASE 

Tbe long term terrain d a t a h e  is part of LThl. It j t o m  the data neces- 
sary for 3 mobile robot to perform -.-'sion-based navigation and guidance. preaic: 
vis1-A events. svch as landmarks and horizon lines, and :o update and r e h e  
maps. 

The !ong term terrain database contains a priori map data  including 
government terrain grids. elevation data. and schemas xpresenting *astances o i  
stable visual events recorded -s3ile traversing paths in the environment. The ase 
of a priori map and grid data :o ?:edict percepts and LO heip guide image s q -  
mentation is shown in Section 3 .  T'le following presents a summary of a s t r x -  
ture for spatial representation and in:'erence that enables 3 iobot to navigate and 
%Tide ;tseIf Through :he environzecr. 

IVe i r s t  derine :he 2otioo o i  3 geographic "?iace" :n r e m  of data sbo*it 
visibie h a m a r k s .  -\ ?iace. as a ?oiot on the surface of :he ground. is i e h e d  $- 
:he :andmaris and spatial ;eia::on-.hIps between landmarks that can be observd 
:ram .i iuec .oc~:.oc. 1:oie ;<:5:3.-;, 3 ?;see  2 3 3  be c s k e c  3 1 - .~gi02  -;c:.. 
in whit: 3 h e d  set of :andrnsr<s 132 he observed from miwhere :n :he .-eqion. 
3nd reiatiooships between :he= do xot change in some appropriate quaiitat;.;e 
sense. Data lbout ?laces 's s:ored :n structures called siewfrsmes. jOuna3::es 
and orientation regions. 

F?ewframes provide 3 aeinition of place in :erns of relative anqies lad 
angular error between landmarrs. 32c very coarse estimates of the absoiute razqe 
of the !andrr.arks rrom our ?oi3t of msernt ion.  i?ew!'rarr.es si!ow :he qstern -0 
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localize its position in space relative to  observab:e local landmark coordinate sys- 
tems. In performing a viewframe localization, observed or inferred data about 
the approximate range to  landmarks can be used. Errors iu ranging and relative 
angular separation between landmarks are smoothly accounted for. A priori map 
data can also be incorporated. A viewframe is pictued in Figure 20. 

X view frame encodes the observable landmark information in a stationary 
panorama. That is, we assume that the sensor platform is stationary long 
enough for the sensor tr pan up to 360 degrees, to  tilt up to 90 degrees (or to use 
an omni-directional sensor :Cao et.al. - 86,), to recognize landmarks in its field of 
view, or to buffer imagery and recognize l a d m a r k s  while in motion. 

-4 sensor-centered spherical coordinate system is established. It fixes an 
orientation in azimuth and elevation, and takes the direction opposite the current 
heading as the zero degree =is. Then two landmarks in front of the vehicle, 
relative to the heading, will have an  azimuth separation of less than 180 degrees. 
If we w u m e  that no two distinguished landmark points have the same elevation 
coordinates (Le.. no two distingukhed points appear one directly above the other) 
then a well-ordering of :he landmarks in the azimuth direction can be generated. 
We can speak of the iandmarks as being "ordered from left to right". The rela- 
tive solid angle between two distinguished landmark points is now well defined. 

Cnder the above assumptions, the system can pan from left to right, recog- 
nizing landmarks. L, . and storing the solid angles between landmarks in order, 
denoting the angle between the i-th and j-th landmarks by .bg,, . The basic 
viewframe data are these two ordered lists, (L ,,L ?....) and (Ang12,-hg23,...). The 
relative angular displacement between any two landmarks can be computed from 
this basic list. In Levitt et.al. - 97 we show how to use this data to essentially 
parametrize all possible triangulations of our locarion reiative to a set of simul- 
taneously visible landmarks. This !ocalites the iobot's position in space relative 
to 3 local landmark coordinate system. 

Viewframes contain two basic dimensions of data: the relztive sng!es 
between landmarb. and the estimated range (intervak) to the landmarks. ii w e  
drop the range information. x e  are left with pureiy topological data. That is. it 
is impossible. using only the relative angles between landmarks, and no range. 
rnap or other metric data. to determine the reiative angles between tripies of 
iandmarks. or to c o n s t r x t  parametric representations of our location with 
respect to the landmarks. Sonetheless. :here is :opo!ogical localization informa- 
tion ?resent in :he ordinal sequence of landmarb: there is a sense in whici we  
~3x2 compute differences between geographic regions. and observe which region we 
3re In. 

The basic concept is :o 2ote :hat if we dr3w 3 line between two Ipoi-.c) 
iandmarks. 3nd 2roject chat line onto the (possibly not flat} surface of the 
;-OL:LC, :he2 :z:s .:ce livides :he 3 ; : 5  h:o :-.vo :J:;zc: .-egion,s. -1 . re  :3n 
observe :he !andmarks. w e  can observe which side of this line we are on. The 
"virtual boundary" created by associating two observable landmarks tosether 
thus divides space over the region in which both iandmarks are visible. \Ve ssll 
these :andrnark-?air-boundaries (LPB's), and denote :he LPB construcred .ram 
the :andmarks L 

, . .. . .  .. 

m d  L ? by LPB(L ,.L :,!. 

Rouqhly speaking, if we observe that landmark L 3 on our !eft hand. and 
landmark L ?  is on our tight. 3r2d the angie from L I to L (leit to right) s less 
than 180 degrees. :hen we derote this side of, or equivalently, this orientation of, 



the LPB by :f, , L 2]. If we stand on the other side of the boundary, LPB(L ,,L ?), 
“facing” the boundary, then L w i l l  be on our left hand and L , on our right and 
the angle between them less than 180 degrees, and we can denote this orientation 
or side as IL2 L l i  (left to right). 

More rigorously, define: 
orientation-of-LPB(L l , L  ?) 

= sign(x-el2) = 0 if = x 
-1 if 0 1 2  < 7 

-1 if e,, > x 

where e,, is the relative azimuth angle between L , and L measured in an arbi- 
trary sensor-centered coordinate system. Here. an orientation of - 1 corresponds 
to the .L , L 2 i  side of LPB(L ,,L?), -1 corresponds to the -L2 L ,; side of 
LPB(L ,.i ?) and 0 correspcinds to being an LPB(L l ,L  2). It is a’straightfonvard 
to show that this definition of LPB orientation does not depend on the choice ot 
sensor-ceqtered coordinate system. 

LPB’s Sive rise to a topo!ogical division of t?e ground surface into observ- 
able regions of localization, called orientation regions. Crossing. boundaries 
between orientation resions leads to a qualitative sense of path planning based on 
perceptual information. The three levels of spatial representation given by map 
or metric data, viewframes ana orientation regions are pictured in Figure 9. .i 

4’ 

Figure 9: 1 I u 1 t ip ie- L e \-e Is-o f- 3 pat i al Rep menta t ion 
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natural environmental representation based on view,, ames recorded while follow- 
k g  3 path Is given by two lists. one !bt of the ordered sequence of viewframes 
collected on the path. and another of the set of landmarks observed on the path. 
We call the viewframe list a viewpath. The landmark list acts as an index into 
the viewpath, each landmark pointing a t  the observations of itself in the 
viewframes. For efficiency. the landmark list can be formed as a database that 
can be accessed based on spatial and/or  visual proximity. k-isual proximity can 
be obsen-ed, or computed from an underlying elevation grid and a model of sen- 
sor and vision system resolution. 

The first occurrence of a landmark points a t  the instantiated schema or per- 
ceptual structure in the vision system database that was used to gather evidence 
in the landmark recognition process. ;\iter that. all recognized re-occurrences of 
this landmark point back at this initial instance. The same :s true for the first 
occurrences and successful re-recognition of LPB's and viewframes. This mechan- 
ism allows multiple visual path representations, built a t  different times, to be 
incrernentaily integrated Eogether as they we acquired by using a common land- 
mark indexing pointer list. 

1Ve use an environmental Tepresectatior, for orien,ration-region reasoning 
that is a list of oriented LPB's encountered and crossed in the course of following 
a path. \Ve call such a list an orientation-path. -4s with viewpaths, there 1s an 
associated landmark lisr that indexes into the orientation-path. 

-1 dynamically acquirable environmental representation that m e s e s  ?he 
representations for viewpaths and orientation-paths consists of an ordered list 
interspersing riewframes. LPB crossings. and appearance and occlusion (or loss of 
resolution) oi  landmarks. as well 3s recording the headings taken in the course of 
folloiving the path over *s-!ikh :he en-:i:ocmen,tz! 2 2 3  is k i n g  buI!t. Thus. we 
can inteqrate the representathns required for viewframe and orientation region 
'ssed resocling w i t h  headin$ ana landmark informa~ion to formulate 3n environ- 
nenical :epresentation *hat supports hybrid strategies fcr navigation and Zui- 
dance. The representation k formed at  runtime and consists of multiple inter- 
:occirg ;ists of sequenLial. ::me ordered. l ists of visual events that include :hose 
necessary :'or :he navigation and guidance ziqorithms presented in Levitt et.31. - 
9 7 .  
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Figure 10: Terrain Data Figure !l: A Prior Terrain Type Classification 

i'igure 12: Predicted Segmentation From Grid Data 

and the :errain data. (the relevant sensor parameters were not available). Figure 
11 shows the terrain and feature classification supplied with the a priori data. 
These correspoQd 50 sets of image overlays in register with the elevation data. 
The road netxork is stored as 3 set of curve objects that is decomposed into 
!inear segnents with supplied attributes. such as mad material and width. Ter- 
~ a i n  Datches are ex:racted as regions from :errah type information snd  
parametric surface fits to :he 3 pr.ori eievation data. 

F!gure 12 shows hzw the grid registered terrain data is instantiated Into 
ST\! 7 0  'orn 3 ?redIcted segrnenrntion. The grid data regiors from connected 
znmysis corresponc; :o schexa ;mrances ;n ::?e Long .arm :errsin xemory.  L:3-  
Slished s d s c e  dk?lay !ec!xiques are Iised to project the elevation with the asso- 
ciated schema instances :o form 3 yedicted view. Image positions 3re then 
labeied with :heir associated schema Instances. .\dditionally. there 3re many 
schema Instances. ordered by depth. st the corresponding image locations. The 
resuiting 7retiicteti segmentation 5 processed as an abstract image where criticai 
perceptuai events 3re determined Sy site. adjacencies across occlusion joundaries. 
or :?pes c f  terrain with i igh semantic contrast. such s water, fields. or maa- 
made 5t:'ictures. The ?erceptuai structures 3re merged together based upon 
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distances and semantic type to yield predictions at different resolutions. 

Figure 13 shows the predicted terrain patches for ;&e vehicie positioned 
with respect to the terrain in Figure 10. Figure 14 shows the predicted segmenta- 
tion after filtering to pull out the horizon line and road terrain discontinuities for 
roads near the vehicle. This data is quite coarse (30m sampling), and image areas 
in :he foreground are highly composite containing instances of road 2nd the adja- 
cent grassy fields. SoRetheiess, the predicted segmentation yielils a qualitative 
description of predicted image features that is sufficient to initialize and  direct 
grouping processes to find corresponding image features and relationships. The 
key characteristics of the predicted segmentation are that the vehicle is o n  a flat 
plane, and that its field of view consists of road and grassy field terrain patches 
with some mountains in the distance. Predictions cf the dirt road off to the right 
and the intersection are made from the road-network and the elevation informa- 
tion stored along with it. The predictions are in terms of constraints on region 
adjacencies across boundaries, and the shape and attributes, such as color con- 
trasts, of the boundaries themselves. The horizon line constraints are tha t  it will 
tend to have smoothly changing orientation and be adjacent to a large homogene- 
ous region (the sky). In general. the predicted features are described with con- 
str3i2d 3ttributes determined from the visibility components of schemas. 

Figures 13 and 16 show some of the  contour related structures in the initiai- 
ized PSDB. Figure 15 shows the edges extracted at one spatial resolution using 
the Canny edge operator Canny - 93. \Ve have found it useful not to appiy 
n&se i i ippiesioii  EO ex:rac:ed zegr?.ents in order LO base Bltering on structural 
properties of the contours. including linear deviation and relationships to other 
image structures. Different linear segment fits for this extracted edge images are 
shown in Figure 16. 

Figure 17 shows the results of grouping processes applied to a set cf 
selected curves in Figure i 2  with multiple associated attributes for orientation 
and color contrasts. The grouping processes were constrained by the predicted 
segmentation in Figure 14 using constraints on allowable color contrasts, changes 
in linear segment orientation. 3nd rough image 2osition and extent. h1ultip:e 
groups 3re obtained for each predicted image event. Selection of one, o r  mah- 
taining multiple aiternative groups. is explicitly represented in the schema instaa- 
tiation structure. Here. groups were selected based xpon length and uniformit:r 
of composite attributes.  

F;O,~?Y 18 shows :he results d a road schema instantiation based upon 
matches to extracted road boundar es in accounting for road surface properties 
chrougn P.\RT-OF :eistions. Texture e!ements adjacent to the mad boundar; 
which 3re consistent -\!th 3 road surface. such as :ow contrast. parallel edge3 
corresponding to :read narks. 3re used :o direct queries to instantiate potentiai 
road area. Queries 3re ais0 used to determine the p s e n c e  of anomalous s t r x -  
tures ' 2  the road s u c i  3s s n y * h i c ~  whic5 Is 5iqh contrm or oriented perpendic.1- 
iar to rhe road Girection. 5ucn s t ruc tum require aisamoiguation :nrougn Inst32- 
'iation o i  another sche:na !it could be 3 road marking) cued by the anomaiy 3r 
elevation estimates derived from motion displacements or range sensing. 

Significant in3ge S t i u C t U W S  3ear :he horizon line 332 particx!arly importa3t 
for iandmark extraction. Figure 19 shoas extracted interesting 7erceptuaI grocp 
>ear 3nd above :he horizon line. FIgure 20 shows 3n extracted viewfrarse 
tepresenticg the ieia~ive visuai spatial relationships Setween some of the  objecs 
extrac:ed 'ram :his 3eid o i  view. 



Figure 13: Terrain Patches Figure 14: Merged Terrain Patches 

Figure 15: Canny Operator Figure 16: Linear Segment Fits 

-; -I\,---- - -- 
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Fiqure 17: Contour Groupings 
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Figure 18: Road Schema Instantiation Figure 19: Significant Perceptual Groups 

Figure ?& C;iewframe Instance 
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8. SUMMARY 

The architecture we have developed, using terrain and mad schemas with 
implemented system components for. perceptual processing and manipulating long 
term terrain data, has been successfully used in tas'xs for ALV navigation and 
scene interpretation. 
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